Linear filtering and nonlinear interactions in direction-selective visual cortex neurons: a noise correlation analysis.

نویسنده

  • C L Baker
چکیده

Spatial and temporal properties related to direction selectivity of both simple and complex type visual cortex neurons were assessed by cross-correlation analysis of their responses to random ternary white noise. This stimulus consisted of multiple randomly placed bars, each colored white, black, or gray with equal probability, which were rerandomized every 5-10 ms. A first-order cross-correlation analysis of a neuron's spike train with the spatiotemporal history of the stimulus provided an estimate of the neuron's linear spatiotemporal filtering properties. A nonlinear correlation analysis measured the amount of interaction for pair-wise combinations of bars as a function of their relative spatial and temporal separations. The spatiotemporal orientation of each of these functions was quantified using a "motion energy index" (MEI), which was compared to the neurons' direction selectivity measured with drifting sinewave gratings. Both first-order and nonlinear correlation plots usually showed s-t orientation whose sign was consistent with the neuron's direction preference; however, in many cases the MEI for first-order analysis was weak compared to that seen in the nonlinear interactions. The structures of the nonlinear interaction functions were also compared with predictions from a conventional model of direction selectivity based on a simple spatiotemporally oriented linear filter, followed by an intensive nonlinearity ("LN model"). These comparisons showed that some neurons' data agreed reasonably well with such a model, while others agreed poorly or not at all. Simulations of an alternative model which combines signals from idealized lagged and nonlagged front-end linear filters produce noise correlation results more like those seen in the neurophysiological data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting neuronal responses during natural vision.

A model that fully describes the response properties of visual neurons must be able to predict their activity during natural vision. While many models have been proposed for the visual system, few have ever been tested against this criterion. To address this issue, we have developed a general framework for fitting and validating nonlinear models of visual neurons using natural visual stimuli. O...

متن کامل

Dynamics in Developing Cortex

The complexity of the brain is overwhelming. How do we identify the essential aspects of structure and connect them to function? A complete model of the brain would be a numerical quagmire. Instead, we rely on effective interactions between pairs of neurons and endeavor to relate these interactions to observed phenomena. As a model system, we focus on neurons in primary visual cortex that respo...

متن کامل

Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.

Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving si...

متن کامل

Temporal interactions in direction-selective complex cells of area 18 and the posteromedial lateral suprasylvian cortex (PMLS) of the cat.

Temporal interactions in direction-sensitive complex cells in area 18 and the posteromedial lateral suprasylvian cortex (PMLS) were studied using a reverse correlation method. Reverse correlograms to combinations of two temporally separated motion directions were examined and compared in the two areas. A comparison to the first-order reverse correlograms allowed us to identify nonlinear suppres...

متن کامل

Complex Cell-like Direction Selectivity through Spike-Timing Dependent Plasticity.

Complex cells in primary visual cortex exhibit highly nonlinear receptive field properties such as phase-invariant direction selectivity and antagonistic interactions between individually excitatory stimuli. Traditional models assume that these properties are governed by the outputs of antecedent simple cells, but these models are at odds with studies showing that complex cells may receive dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Visual neuroscience

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2001